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Considerations about the motion of the Courant and Snyder
Invariant curve {[1] are presented which lead to an exact formula for
defining the adiabaticity of a linear harmonic oseillator, described
in terms of the auxillary function for the invariant [2-5]. For a
typlcal example ln which an csecillaticn frequency changes at a finite
rate and in a finite period, an asymptotic expression of this formula
deslnated as the adlabatic ratic 1s obtained by a systematic
procedure. This systematic procedure involves a method of

agymptotically solving the non-linear auxillary equation.



1. Introduction. We 3shall consider a time~dependent harmonie

ogseillator described by the Hamiltonian

H(IJP;t):(n/z)[ p* + }Ltt)x"} (N

where A (t) is the time-varying parameter. It is well known that for
sufficiently slow change in the parameter the action variable of
syatem (1) 1s an approximate constant, which we desinate as an
"adlabatiec constant™. The proof for adiabatic 1invariance of the
"action integral" has been glven, for example, in the literature [6].
Unfortunately, the adiabatic theorem does not tell quantitatively how
slow the change in the parameter must be for the adlabatlc theorem to
hold. Practically, we would expect to calculate the Increase in the
action integral when the change In the Hamiltonlan is nearly adiabatic
and even abrupt. So far approximate methods to calculate the increase
have been presented by several authors[7-10] and in particular applled

to the following two cases:
2,1 2
2_(17)‘: [w,o—(w,o—wo)'EXP(-—P't)]

where W 1s the asymptotic limit £t -3%°0, and W, ,is the value at
t=0,
2 | { L\( 2
ALT) = Wo | 7 (n+1) + = (w=1) tankel)
where n is an integer.
These calculating methods require a finite wvarying ratio and an
infinite varying perlod of the parameter 7L(t). The later

requirement 13 not always compatible with real situations. In

addition, although it is not Immovable, intricacies of an initial



sha=o problem 13 unavoldable in them. TIn this  paper, a method for
caleulating the maximum Increase of the action intagral for the case
where the parameter chaages at the flnlte varying rate and 11 2 fintte
varying pericd i3 presented. Tn this method, an initial phase problam
doesn’'t appear Lnherently.

Wa point out that the system (1) 1as an exact dynamical invarlant
independent of the change in the parameter, which 1s designated as the

"Courant and 3nyder invariant®
[ . 2
Tlep ;)= [1/1@&\]{%‘* [3pYx-pdp] Q (2)

where §(t) satisfies the auxiliary differential equation

) LAt A g 1 (3)
s fC = AL o H
When A(t) is constant, the Invariant I is exactly identical with the

action variable of the system (1) if we choose the initial condition
ﬁ'(-.&a\: \/ﬁ . P(-NS: C . (4

For a time-varying function A(t), from (2), we know that a sequence
of infinite phase polnts which have a certain constant value of T at
an arbitrary time behaves as a deformable moving ellipse in the phase
space (x,p,:t) after that time. The form of such a ellipse, called an
"invarianit eurve” In the following, {3 uniquely determined by the
auxiliary differential equation (3) alone.

We will now conslder the case when the parameter A changes from
a constant value 7{, to another constant value A, in a finite period.

Tt is noted that such cases often appear in raal situaticvns. That is
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Fig. 1
We consider the invariant curve degeribed in the term
I(Y,\D ; tﬁ) = 10 L t0< tl » (6)

with a constant I,. The quantity I, is equal to the wvalue of the
action variable of infinite phase points which c¢omprise the invariant
curve, as mentioned above. So 1f we continue to examine the motion of
the invariant curve at t:>t2, we find the exact time-svolution of such
a gequence of infinite points which once possessed the same action
variable J. This fact will give us useful informations about a change
in the action variable. Furthermore, it may enable us to estimate the
adiabaticity of the system (1)}. In fact, Symon [11] has derived the
maximum and minimum change of an acticn integral, based on the similar
idea. Here, from a geometrical point of view, we shall derive an
exact formula for estimating the adiabatieity, which is equivalent to
that of Symon. This 1is desaignated as the adiabatic ratio in the
following. For the case stated in the early part of this section, an
asymptotic expression of this adlabatic ratio shall be derived
analytically , by using an asymptotiec solution of the auxiliary
equation (3). The analytical results are found to be in agreement

with a numerical evaluation.



2. Moticn of Invarlant curve and adlabatic ratio. We may
characterize an ellipse or an invariant curve by two parameters of

i , & which are a function of &(t) and B (t) (See Fig.2)
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If we c¢hocsa the initlal conditions ﬁ(to)=1/ﬁ%, p (ty)=0, the

solution of (3) is
Blt)= 1 /WA, , plr)=o0 , To £T& T, (D

" Therefore, before the variation of the Hamlltonlan the form of the
above ellipse remalnes unchanged and its motlon i3 only parallel
displacement along the axls of time., At t=t,, the ellipse begins to
move, following the time-evolution of @Nt) which i3 determined by
Eq.(3). After the variation of the Hamiltonlan,i.e.,t2t,, the
ellipse continues to move unless ( @(t;), é(tz)) 13 equal to (T/Ii;,O)
(See Fig.2).

Now we write the phase space area surrounded by the invariant

curve which remains constant in the reglon tg §.t<(m s 1In the term

S, = 2T 1o, (8)

In addition, we shall define S as the cross section of the outslde

envelope which the moving ellipse makes after t=t; (See Fig.3).

Fig. 3



It 13 noted that the phase area between the outside and Inside
envelopes 13 the area effectively occupled by the phase points which
have the same action varlable J at té&t,. From Fig.3, the cross

gecetion S is descerlbed in the form

é - T Maxé(t\ Maxéj\lt), t2tla, (9)

Then 1t is trivial to write ¥(t), §(t) in the terms of R(t), @(t)

(1) - Jz_lofnt), (10a)
S\[t): J 2T.¥it), (10b)

where
Yy = [+ (3&)1 /4] /@{t). (11

Here we define the adiabatic ratio r in the term

s
>,

The soution of (3) with the constant ) =4, is well known:

=

!
%
ov [ Max pI8) Max¥1e) ] (12)

(5{1-“) = A4B%i/a, + A Cﬁ.[zﬁ;(t-tﬂ] +Bsinx ﬁ;h—hﬂ (13a)
p

él,t) > 2, S - A sihn D23, (+-TD) 800 D\TXL&-EQ]}(BM
v

where 4 and B satlsfy the boundary conditicn

Blt 2)
(S l't.;.)

1 b
L Rg 1 /n, + 8, (14a)

22, B (14b)

i

From (13a) and (13b), it is trivial to obtain the maximum values of

ﬁ(t) and ¥ (t). We write these values in the terms
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Mai(?lt) = ‘},’“+B”+I/7L;, -+ " A”+ BT (15a)
r

Nox YY) = 1 / ( JAL+Bl+1/hL -V A"—&Bz)' (15b)

Substituting (15a) and (15b)} into (12), we obtain

R el Parrar S

This agrees to the result obtained by Symon [11], though notations of
. 2
terms are gslightly different. Replace the ferm of A +B by the

auxiliary function and 1its time-derivative. 3So that (16) becomes

F o= X =+ J%"— Q)

s

where

)(:@[(ﬂ‘cz)-q»_f‘;‘:‘ii)_ - ! ]

> 4—1:.?“:1) 11?“3:.} (1)

According to Eq. (18), it i3 identified that only the values of the
auxiliary function and 1ts time-derivative at t=t, are required in
order to obtaln an exact expression of the adlabatic ratiec for =
certaln given change in the parameter as seen In Fig. 1. In the next

section, we shall discuss how these values can be evaluated.

3. Approximate Calculation Method of Adiabatie Ratio We shall
cansider the cosine-like change of the coefficlent which often appears

in beam dynamica of accelerators and storage rings, and other fields

of physies:
2

A1) = { —}'_— [ w+w, + (w,-wQ(os_T-_tl} (t—t.ﬂ (19)

1.4t eT,



where ﬁ‘:[uf, llzcgf'and T(=t,-t|) 1s a finite transition time.
TIntroduce the parameter defined as a ratio of the transitfon time to

the initial oscillation period
M :'T/T. (T.=2T/M|)) {20a)

and a decrement ratio of the coscillation frequency, that is,

W,
& = | - @, . (20b)

Furthermore, making a change of time-scale

6 = T UT"UO/T, (20¢)

we have the normalized equation of metlon

%, + pmP(2-6€& + €Eosh )LDC:O. (21

Here, for a glven € , the parameter /L( can be regarded as an
adlabatic parameter, since largeness /4 is a measure of the slowness
of the coefficlent h[t) . Then, introducing the root square function

of the auxiliary function
7
2
Py [pie)1”,

we can reduce the auxiliary equation (3) to the following non-llnear

aquation:
. I * d
et ﬁ'}“’)? 5 ey, ( Ea_é) (22)

y

—l
with the initial condition P(0) =[ﬂ-}loﬂ and P(oY= 0,
where

4= u(-€) (23a)



9

¢ z
= +
J;-ts') ( \ T (0593 ] (23b)
To solve £g.(22), 1lst us determine a straightfoward asymptotic
expansion for “ﬁ—1 . Thus we assume that
\ \
Flo)= Pyt — RBY+ T PlBY « -~ - - (24)

Substituting (24) into

2 (' + ®RfOFI—1=0 (25)

rd

-1
and equating coefficients of equal powers of ® to zero lead to

+ he) R - 1=0 (26a)

oL Fo t 4R + 34)RPP =0 (260)

»

f): [..f": “'}“’”fi] -+ ?f’:?l [, +HeVe 1+ ”‘}’(9\?:(?|L* B,F )0 (25¢)

v
'

i
]

Here the equal or less terms than the 0-th power of ‘ﬁ_1are included

in (26a). The solution of this zeroth-order equation is
-1/4
£, = [Bted 177 (27a)

Further, we can determine the higher approximations by simple
algebraic calculations. Substituing (27a) into {26b) and solving for

fﬂ ;s Wwe have

?‘ = -

\
! q
.a4 ; —ha + L - - =
e (-x “g + %y ) (27b)

Substituting (27a) and (27b) into (26e) and solving for fl , Wwe have
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SD = eo‘é +3Pl.§o+6‘§§3\l
2 4% $,

Therefore

(27e)

5’-_- ﬁ—lfﬁ}_gﬂ/qr + _11_6{3/4 (_5_%'13/4 - 2

&

/ -t
) o
Though the initlal conditions of (22) require

£ le)= o) =

- o~ - - = O

. 2

I(O):?L(D):. - = - -~ o .

unfortunately, Sﬁ does not at least satisfy them because of
i;(ﬁ)"— ‘_ZE'. { "'—-6“'51‘18"* — (DSQ'*"DSG)'{’D at 9= 0
12— € - €
As, however, only the values of ¢ :
ignore this fact.

following conditions

y § at 8 =T are required, we will
For the fast convergency of Eq.(28), we require the

1
+ « | o v M € > (29a)
€ _ 1 ov €< 1 (29b)
- €
For a value of M satlsfying the condition (29a), Eq (28) 1is a good
asymptotic expression, provided that a glven value of
than unity Now, using the following terms

¢ 1is smaller
'ﬁ4'q = }A—IKZ — € 3—1/i
— G N\ *

-S-('rﬂ = 27 (:.-e’.-)
2 Ce-1)

(2— €)Y~
we obtaln the asymptotic values of $(w)) and

, fery=0,
.-}.‘ ()

f"('r)
sy = 31 (L me Ut 4 e (o ey

— 9%
+0 /*?)caoa)
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$)=0 , (300)

Aecordingly, the asymptotic values of the auxiliary function and 1its

time-derivative for become

-1 -1 =1 - -4 -5
BCTy = 2 Ci-eY' w4 Toeime) pt A0 G
2
. (31b)
-5
pEY =0 pu7%)
Finally, substituting (31a) and (31b) into (17) or (18), we can write
the adiabatic ratio 1In the form of an asymptotic expansion of the

adiabatliec parameter :

r= 1 + 2"560—63_3}4"" + O(pu) 62

For two examples of € =1/2 and 2/3 which mean oseillation
frequency reductions of a factor of 2 and 3, the adiabatic ratio is

plotted as a function of the adiabatic parameter fu_ in Fig.4a and 4b.

Fig.lUa and 4b

Here, calculations are performed to first order In Eg.(32). In
addition, numerically computed values are given in the same filgures.
They are obtained by substituting the wvalues of Q(1C) and ﬁ(ﬁ:)
caleculated numerically into the exact formula (18). Both results for
each cagse agree well as f‘ becomes larger.

The present systematlc procedure to calculate the values of the
auxiliary function and its time-derivative at the just time when the

parameter '7L(t) completes 1ts changing can be applied to other cases
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that this parameter smoothly changea in a finlte period. Further
extensive applications of the present method and a problem connected
with the convergency of Eq.(28) not discussed in detall will be given

elaewhere.

The author would 1ike to thank Mr. A. Ando and Dr. A. Ruggiero
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manuscript, After the formula Eq.(16) for the adlabatic ratic was

obtained, Dr. F. Mills has brought Symon's work to his attention.

References

[1) E.D.Courant and H.S3.Snyder, Ann. Phys. 3 (1958) 1.

[2) H.R.Lewis and W.B.Riesenfeld, J. Math. Phys. 10 (1969) 1458.

[3] M.Lutzky, Phys. Lett. 684 (1978) 3.

(4] J.R.Ray and J.L.Reid, Phys. Lett. 714 (1979) 317.

[5] H.J.Korsh, Phys. Lett. 74A (1979) 294.

{61 A.J.Lichtenberg, in: Phase-Space Dynamics of Particles, (John
Wiley & Sons, Inc) (1969} 53.

[7] F.Hertweck and A.Schluter, Z. Naturforsh 124 (1957) 844,

[8] V.G.Backus, G.A.Lenard and R.Kulsrud, Z. Naturforsh 154 {(1960)
1007.

[9] P.O.Vandervoort, Ann. Phys. 12 (1961) 436,

[10]1J.E.Howard, Phys. Fluids 13 (1970) zui07.

[11]K.R.Symon, J. Math. Phys. 11 (1970) 1320.



Fig.1

Fig.2

Fig.3

Fig.la

Fig.lb

13
Figure Captilons

Time-varying coefficient ()

Time-evolution of invariant curve

characteristic parameters % and & .

Qutside envelope and inside envelope of moving lnvariant curve
Adiabatic ratio versus the adfabatic parameter M for € =1/2.
The dots are numerically computed values and the llne is the
theoretical prediction.

Adiabatic ratlo versus the adiabatlc parameter /4 for & =2/3.
The dots are numerically computed values and the line is the

theoretical prediction.
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